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Genome duplicagion and the origin of the vertebrate skeleton
GuangJun Zhang' and Martin J Cohn'?

During vertebrate embryonic development, tissue patterning
and differentiation are regulated by members of multigene
families. Evolutionary expansion of these families is thought to
have played a role in the evolution of anatomical complexity,
including the origins of new cell and tissue types. A defining
feature of vertebrates is an endoskeleton, the primary
components of which are cartilage and bone. The molecular
control of skeletal patterning has been the subject of intensive
investigation for over two decades. More recently, comparative
studies of organisms at key phylogenetic positions have
highlighted the importance of gene duplication in the
evolutionary diversification of connective tissues.
Understanding the natural histories of gene families involved in
skeletogenesis is therefore central to the issue of vertebrate
skeletal evolution.
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Introduction

The molecular evolution of the genetic toolkit that
regulates pattern formation is reflected in the broader
history of the vertebrate genome. Since its publication in
1970, Susumu Ohno’s paradigm-shifting book, Evolution
by Gene Duplication, has had a profound influence on our
thinking about the relationship between evolution of the
genome and evolution of organismal design [1]. Ohno
proposed that during the evolution of vertebrates, the
entire genome underwent two rounds of polyploidization,
which has come to be known as the 2R (for ‘two rounds’)
hypothesis. Although there is compelling evidence from a

multitude of phylogenetic and comparative genomic
analyses that large-scale gene and/or whole genome
duplications (WGDs) occurred, the 2R hypothesis has
been a source of extensive debate. The recent sequen-
cing of the lancelet genome provides strong support for
two rounds of WGD occurring between the origin of
chordates and the origin of jawed vertebrates [2°°],
though the precise timing of these events, the mechan-
isms by which polyploidy arose, and the effects of gene
and genome duplications on the evolution of vertebrate
development are open questions. In this review, we
discuss the mechanisms of genome duplication, the state
of the 2R hypothesis, and the implications of recent work
on basal chordates and cyclostomes for our understanding
of vertebrate skeletal evolution.

Whole genome duplication: cell biology and
evolutionary signatures

Polyploidy can arise by several different mechanisms,
some of which cause the duplication of the endogenous
genome of a species, whereas others involve the fusion of
related genomes. Interspecific hybridization can result in
allopolyploidy, in which two diploid germ cells from differ-
ent species fuse to generate two pairs of complementary
chromosomes (the similarity of chromosomes duplicated
by such fusions reflects a level of homology known as
‘homeology’). Autopolyploidy, by contrast, refers to a
doubling of the genome within a species, which can arise
as a consequence of cellular anomalies such as chromoso-
mal nondisjunction, endoreplication (incomplete division
after DNA replication), or disrupted/delayed cell cycle
progression [3]. Although the most extensive and informa-
tive work on polyploidization has been done in plants,
examples are found throughout the animal kingdom, in-
cluding most of the extant classes of vertebrates.

"T'he mode of polyploidization is relevant to the question of
how many duplications occurred during the evolutionary
history of a given taxonomic group, especially when top-
ology of gene trees is used to make inferences about
patterns of duplication. For example, two rounds of
WGD would be expected to result first in Gene ABCD
giving rise to Genes A/B and C/D, after which A/B would
produce A and B, and C/D would produce C and D. Thus,
atfirst glance, two tetraploidy events (1:2 and 2:4) would be
expected to result in a phylogenetic tree that groups the
genes in a symmetrical pattern ((A,B),(C,D)) (Figure 1a).
However, different mechanisms of polyploidization can
yield different tree topologies [5-7]. Although two rounds
of allotetraploidy would be expected to yield symmetrical
trees, two rounds of autotetraploidy in close succession
may result in asymmetrical trees, such as (A,(B,(C,D))), a
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Symmetrical and asymmetrical gene tree topologies can arise from two rounds of genome duplication. (a) Two rounds of genome duplication involving
allotetraploidization followed by diploidization can result in symmetrical genes trees. Symmetrical topologies can also follow autotetraploidization, if
diploidization occurs before the second duplication event. (b) Autotetraploidy can produce asymmetrical tree topologies if the second duplication
closely follows the first, before diploidization. After the second duplication, diplodization (and crossover) can then occur randomly and at different
rates, resulting in sequential divergence of the homeologs. For further details, see [5-7].

topology often observed within vertebrate multigene
families (Figure 1b). The underlying logic is relatively
simple. If repeated rounds of tetraploidization are followed
by complete diploidization (degeneration of the tetraploid
genome such that it returns to the diploid state), then
symmetrical trees would be predicted [5-7]. However if
the second round of tetraploidization occurs more rapidly,
before diploidization has been completed, then the four
homeologous chromosomes should be able to pair freely in
this ‘octoploid’ state. Gradual sequence divergence of the
four ‘homeologs’ can lead to asymmetrical gene trees, and
crossover can displace genes that were previously linked
[5-7]. The importance of these models is that they illus-
trate how different biological mechanisms of genome

duplication can leave a range of signatures in the genomes
of descendant species, and decoding these signatures
requires that one examine multiple lines of evidence,
including gene number, organization and number of paral-
ogy regions, tree topology, and tree congruence.

Fates of duplicated genes

"The short-term consequences of polyploidy are crucial to a
discussion of WGD as an evolutionary mechanism, as it is
the survival and fitness of the organism harboring the newly
duplicated genome that determines whether the polyploid
state persists or becomes a dead end. For sexually reprodu-
cing organisms, an immediate challenge is embryo viability
and, for those that develop normally, their disease state and
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mating compatibility. In mammals, changes in ploidy most
often lead to embryonic lethality or disease, though an
interesting exception is the South American rat Tympa-
noctomys barrerae, which has two sex chromosomes and 100
autosomes [4]. Studies of experimentally induced poly-
ploidy in rodents have shown that tolerance to polyploidy
can be influenced by genetic background [8]. For organ-
isms that are viable (and do not suffer from disease)
following a WGD event, population genetics, mating
compatibility, and fitness pose further challenges to the
propagation of the tetraploid genome [9°°].

Several potential outcomes may follow gene duplication
events. Most often, duplicated genes are lost before they
become fixed in the population, and those that do become
fixed are frequently eliminated by degenerative mutation
accumulation [10,11]. Widespread gene loss is one factor
that contributes to asymmetrical tree topology and to the
large number of vertebrate gene families that contain fewer
than four paralogs [10-13]. The fraction of duplicated
genes that are retained has been the focus of considerable
attention from investigators interested in the evolution of
developmental mechanisms, largely because it is these
duplicates that have the potential to acquire novel func-
tions, a process known as neofunctionalization. The clas-
sical view of neofunctionalization is that so long as one copy
of the gene retains its original function, the other copy
would be released from selective pressure and, therefore,
would have new freedom to acquire novel functions [1]. A
third possible outcome is that duplicated genes may
undergo subfunctionalization, in which the preduplication
state is partitioned between the two duplicate copies such
that they exhibit complementary expression patterns or
functions [10]. During subfunctionalization, duplicated
genes accumulate degenerative mutations that result in
each of the duplicates retaining only a subset of the
ancestral expression pattern or function. This model,
known as the duplication—degeneration—complementation
(DDC) model, is particularly attractive because it is based
on each gene acquiring degenerative mutations, which
occur more frequently than beneficial mutations
[10,11,14°°]. Therefore, one would expect subfunctiona-
lization to be the second most common outcome of a
duplication event, occurring less frequently than nonfunc-
tionalization but more than neofunctionalization. There is
growing evidence for subfunctionalization playing an
important role in the evolution of developmental modu-
larity [15°,16,17]. For example, the compartmentalized
expression of Pax/ and Pax9 in the developing vertebrae
may have arisen by an initial acquisition of a single novel
expression domain in the somites, and a later partitioning
into two distinct regions of the sclerotome [17].

Genome duplications in vertebrates: the 2R
hypothesis

The precise number of genome duplications that
occurred during vertebrate evolution has been difficult

to infer from singular data sets, be they phylogenetic tree
topologies, gene family sizes, numbers of duplicated
genes, or paralogy maps [18,19]. In part, this is because
few gene families have maintained their original post-
duplication numbers, genomic structure, or evolutionary
rates, and changes in any one of these parameters can
generate a misleading evolutionary signature. The few
exceptions, such as the clustered Hox and Major Histo-
compatibility Complex (MHC) genes, proved to be the
most useful in early reconstructions of the ancestral
chordate genome, though even these have complexities
in their evolutionary histories that have made for challen-
ging interpretations [20-22]. Nonetheless, the number
and organization of Hox gene clusters in chordates pro-
vide some of the most compelling support for Ohno’s 2R
hypothesis, which proposed that two rounds of dupli-
cation occurred early in vertebrate evolution. A single
Hox cluster is found in lancelets and echinoderms,
whereas four Hox clusters exist in the chondrichthyans
and sarcopteryians examined to date [2°°,23,24°]. Ray-
finned fishes (actinopterygians) further duplicated their
Hox clusters during an additional round of genome dupli-
cation [13,25°26]. Similarly strong evidence for two
rounds of WGD (or at least large-bloc duplications) comes
from analyses of genes in the MHC. The human MHC
lies on the p arm of chromosome 6, and three paralogous
regions have been found on human chromosomes 1, 9,
and 19 [27]. Like the Hox complex, a single MHC-like
complex exists both in lancelets and ascidians [28,29].

Evidence for the 2R hypothesis is not restricted to the
large gene clusters described above. Chromosomal
regions containing linked groups of paralogous genes
(termed ‘paralogons’) are widespread in vertebrate gen-
omes. Early estimates based on draft genome sequences
placed the number of paralogons containing at least 3
genes at over 1000 [30,31]. In an elegant comparative
study of the complete genome sequences of Ciona, Fugu,
Mus, and Homo, Dehal and Boore identified in humans
nearly 3000 paralogous gene pairs that duplicated before
the divergence of fish and tetrapods [19]. Even more
striking is their finding of 454 ‘tetra-paralogons’ (paralogy
regions that occur at exactly four places in the genome)
distributed across all but one of the human autosomes and
on the X chromosome [19]. Widespread tetra-paralogy is
precisely the pattern that one would expect to find
following two rounds of WGD, and although it should
be noted that these are tetra-paralogous regions and not
necessarily tetra-paralogous gezes (a much rarer phenom-
enon because of the frequency of gene loss following
duplication), such signatures in the genome provide
strong support for the 2R hypothesis. The lancelet gen-
ome sequence recently confirmed that jawed vertebrates
have quadruple conserved synteny relative to lancelets,
providing the most conclusive data for two rounds of
WGD occurring after the divergence of cephalochordates
from the lineage leading to jawed vertebrates [2°°].
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Genome duplications in vertebrates:
alternatives to 2R

Although the lancelet genome data are likely to resolve
many of the questions surrounding the 2R debate, it
should be noted that some investigators have suggested
that more than two rounds of WGD predated origin of
jawed vertebrates [32], whereas others have argued that
paralogons (such as the Hox clusters) were assembled not
only by whole genome duplication but also by small-scale
gene duplications and chromosomal rearrangements
[33]. Comparative studies of the Hox clusters have been
particularly informative, and other gene families have
provided additional insights into the number and timing
of genome duplications in vertebrate evolution. With
respect to skeletal evolution, an interesting case is the
evolution of the collagen gene family. Collagens origi-
nated ~800 million years ago and diversified into two

major groups, the fibril-forming and nonfibril-forming
collagens. The fibrillar collagen family consists of A, B,
and C clades [34,35]. Clade A contains collagen types I,
I1, III, and Va2, which are linked to the Hox clusters and
have been proposed to share their duplication history
[32]. CollaZ is linked to the HoxA cluster, Collal is
linked to HoxB, Col/2al is linked to HoxC, and both
Col5a2 and Col3al are linked to the HoxD cluster
(Figure 2). On the basis of a phylogenetic study of the
Hox-linked collagens, Bailey er a/. suggested that the
strongest support existed for a (D(A(B,C))) relationship
among the Hox clusters, and they proposed that this was
achieved by three rounds of cluster duplication
(1 -2—3—4). A more recent analysis of clade A
collagens in jawed and jawless vertebrates showed a
topology of (Col3a1(Col5a2,Col2a1)(Collal,Colla?2))
(Figure 2 and Ref. [36°]). If these genes coduplicated
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Phylogenetic relationships among chordate clade A fibrillar collagen protein sequences and their linkage to the HoxA-D clusters. The four mouse Hox

clusters are shown above each collagen clade, and the colored boxes represent each of the linked collagen genes. Tree is after [36°] and the Hox-
Collagen cluster diagrams are after [32].
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with the Hox clusters, this would support a Hox topology
of (D,C)(B,A).

Two additional findings bear on the question of the
number and timing of the duplication events. Firstly,
both lampreys and hagfish have true orthologs of Co/2a1
[36°,37°°], which encodes the most abundant protein in
vertebrate cartilage. Given that Co/Za/ is linked to the
HoxC cluster in jawed vertebrates, and that Co/2al was
present in the common ancestor of cyclostomes and
gnathostomes, an obvious question is whether the Hox(
cluster also predated the divergence of these lincages.
Lampreys are estimated to have three or four Hox clus-
ters, and hagfishes may have as many as seven Hox
clusters [38-41]. Three independent analyses of the
lamprey Hox clusters have confirmed that additional
duplications occurred in the lamprey lineage after its
divergence from the gnathostome lineage [38-40], and
two copies of Col2al were also identified in lampreys
[37°°]. Force er al. suggest that at least one of these
duplication events predated the lamprey—gnathostome
divergence [38]. In support of their hypothesis is their
finding that several lamprey Hox sequences group with
gnathostome C and D clusters, which is consistent with
the common ancestor of lampreys and gnathostomes
possessing an A/B cluster and a C/D cluster. Whether
the four gnathostome HoxA-D clusters were present in
the common ancestor of jawed and jawless vertebrates has
been difficult to resolve (the extreme divergence of
lamprey sequences clouds their orthology to gnathostome
genes), though answers may come with the completion of
the lamprey genome sequence.

The second issue stems from the work on the ParaHox
genes of jawless fishes, which has led to the suggestion that
the first round of duplication occurred in the gnathostome
lineage after the divergence of cyclostomes [42°]. Phylo-
genetically, the hagfish ParaHox genes lie outside of the
gnathostome Cdx and Gsx clades, which raises the possib-
ility that the hagfish lineage diverged before the genome
duplications that gave rise to the multiple Hox and Para-
Hox clusters of gnathostomes [42°]. In their analysis of
lamprey Hox DNA sequences, Fried ¢ a/. supported the
idea that lamprey and gnathostome Hox genes arose inde-
pendently from a single cluster in their common ancestor
[41], though this contrasts with studies using protein data-
sets [38,39]. If hagfishes do indeed have seven Hox clusters
and one ParaHox cluster, then this would suggest either
that large-scale loss of the ParaHox genes followed the
genome duplications, or the less probable possibility that
hagfish Hox clusters arose by a mechanism other than
WGD. Whatever the status of the Hox clusters before
the divergence of jawed and jawless vertebrates, there is
little doubt lampreys, and possibly hagfish, underwent
successive rounds of independent duplication. Support
for this comes not only from the Hox clusters, but also
from the lack of strict orthology among many other gene

families. Escriva ez a/. analyzed 33 gene families in lam-
preys and hagfishes and argued that the different topolo-
gies reflect a complex history of genome duplications,
smaller-scale gene duplications and a high rate of second-
ary gene loss. They concluded that ‘two major periods of
gene duplications’ occurred before the separation of the
lamprey and gnathostome lineages, with additional dupli-
cations occurring after their divergence [12].

Genome duplication and the origin of the
vertebrate skeleton

The vertebrate skeleton has been proposed to be one of
the innovations that resulted from the amplification of
gene number by WGD [43]. Hox genes and fibrillar
collagens play essential roles in patterning and differen-
tiation of vertebrate connective tissues, including carti-
lage and bone. Duplication of Hox clusters and the linked
clade A fibrillar collagen genes may have played a key role
in this process, in that expansion of these two families
could have provided mechanisms both for the diversifica-
tion of connective tissue cell types and for differential
regulation of their patterning and growth. This raises two
central questions; what is the evolutionary origin of the
vertebrate chondrocyte, and what is the relationship
between increased gene number and its evolutionary
divergence from the ancestral cell type? It has been
suggested that the notochord may represent a primitive
form of cartilage, based on their many shared structural,
cellular, and molecular properties, and that vertebrate
chondrocytes may have evolved from notochordal cells
[44,45]. In gnathostomes, the notochord and/or notochor-
dal sheath expresses most of the vertebrate clade A
fibrillar collagen genes [36°]. Lancelets and ascidians
have been reported to possess a single clade A fibrillar
collagen gene that is expressed in the notochord, support-
ing the idea that an ancestral Co/A gene was expressed in
the notochord of stem-group chordates [36°,37°°,46°].
Thus, the duplication and divergence of the clade A
collagen genes in stem-group vertebrates may have facili-
tated the evolutionary origin of chondrocytes from noto-
chordal cells [36°]. Interestingly, notochordal cells of
lancelets have been found to express several other ortho-
logs of vertebrate chondrogenic genes, including SoxE,
SoxD, Twist, and Ets [47], suggesting that many of the
genetic components required for cartilage differentiation
were expressed in the chordate notochord before the
origin of vertebrates. Understanding how the genetic
cassettes for skeletogenesis were assembled during evol-
ution will require further work on the nature of the
regulatory interactions among these genes in an undupli-
cated genome, like that of the lancelet. Whether the
earliest cartilaginous tissues were derived from meso-
derm, neural crest, or were acellular (possibly secreted
from endoderm) remains unclear [36°,37°°,47,48°°]. Re-
construction of skeletal development in the vertebrate
common ancestor will be most accurate if it combines
inferences from the positions of skeletal elements in fossil
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vertebrates with data on the developmental origin of
homologous structures in extant taxa.

Conclusions

As the number of complete genome sequences from
vertebrates and basal chordates has increased in recent
years, so too has the evidence in support of Ohno’s
proposal that WGD played a major role in the evolution
of vertebrates. Comparative developmental studies show
that neofunctionalization and subfunctionalization are
indeed mechanisms of evolutionary change. Of the
vertebrate organ systems, the skeleton offers the unique
opportunity to integrate comparative development and
genomics with paleontological data, and therefore has the
potential to address the w/o, what, when, where, and fhow
questions about skeletal evolution. Major questions still
remain to be resolved, such as the precise number of
genome duplications, the timing of these events relative
to the origins of the major chordate clades, and the impact
of genome duplication on the evolution of developmental
modularity and complexity.
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