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The segmental architecture of the arthropod head is one of the most controver-

sial topics in the evolutionary developmental biology of arthropods. The

deutocerebral (second) segment of the head is putatively homologous across

Arthropoda, as inferred from the segmental distribution of the tripartite

brain and the absence of Hox gene expression of this anterior-most, appen-

dage-bearing segment. While this homology statement implies a putative

common mechanism for differentiation of deutocerebral appendages across

arthropods, experimental data for deutocerebral appendage fate specification

are limited to winged insects. Mandibulates (hexapods, crustaceans and myr-

iapods) bear a characteristic pair of antennae on the deutocerebral segment,

whereas chelicerates (e.g. spiders, scorpions, harvestmen) bear the eponymous

chelicerae. In such hexapods as the fruit fly, Drosophila melanogaster, and the

cricket, Gryllus bimaculatus, cephalic appendages are differentiated from

the thoracic appendages (legs) by the activity of the appendage patterning

gene homothorax (hth). Here we show that embryonic RNA interference against

hth in the harvestman Phalangium opilio results in homeonotic chelicera-to-leg

transformations, and also in some cases pedipalp-to-leg transformations.

In more strongly affected embryos, adjacent appendages undergo fusion and/

or truncation, and legs display proximal defects, suggesting conservation

of additional functions of hth in patterning the antero-posterior and proximo-

distal appendage axes. Expression signal of anterior Hox genes labial,
proboscipedia and Deformed is diminished, but not absent, in hth RNAi embryos,

consistent with results previously obtained with the insect G. bimaculatus.
Our results substantiate a deep homology across arthropods of the mechanism

whereby cephalic appendages are differentiated from locomotory appendages.
1. Introduction
One of the defining hallmarks of arthropod diversity is morphological disparity

of the appendages. The diversification of arthropod appendages has transformed

the evolutionary adaptive landscape for Arthropoda, unlocking access to various

ecological opportunities and environments [1,2]. The fossil record and phylogeny

of Arthropoda indicate that by the Early Cambrian, crown-group arthropods bore

a division between cephalic, or ‘head’, appendages, and polyramous locomotory

appendages on a homonomous ‘trunk’. This division between cephalic and loco-

motory appendage-bearing segments is observed in such iconic Palaeozoic

linages as trilobites and ‘great-appendage’ arthropods (e.g. Anomalocaris), as

well as Onychophora, the sister group of Arthropoda [3,4].

The segmental correspondence of anterior appendages, the ganglia of

the arthropod tripartite brain and the anterior tagma has long been disputed

[3,5–8]. A general consensus has formed that the first appendage-bearing
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Figure 1. Developmental dynamics of hth expression in deutocerebral and locomotory appendages. (a) Expression domains of Antp, hth, Dll and ss in the antenna
and walking leg of D. melanogaster. In the antenna, hth knockdown or Antp overexpression results in antenna-to-leg transformation. In the leg, hth overexpression
or Antp knockdown results in leg-to-antenna transformation. Gene interactions are shown to the right. (b) Comparative gene expression patterns of the Hox genes
Antp and Ubx in an archetypal insect and arachnid. Note that chelicerate Antp is not expressed in the leg-bearing segments. (Online version in colour.)

rspb.royalsocietypublishing.org
Proc.R.Soc.B

282:20150698

2

 on May 18, 2015http://rspb.royalsocietypublishing.org/Downloaded from 
segments of Mandibulata and Chelicerata are homologous,

based both on the innervation of these appendages by the deu-

tocerebral ganglia (the second part of the tripartite arthropod

brain), and on the absence of Hox gene expression in the deu-

tocerebral segment across arthropods [6,7,9–11]. Implicit in

this homology statement is the homology of the deutocerebral

appendages, which are markedly different in both morphology

and function between mandibulates and chelicerates. The deu-

tocerebral appendage of mandibulates (hexapods, crustaceans

and myriapods) is invariably an antenna, which is typically

elongate, composed of numerous segments (‘antennomeres’)

and dedicated to sensory function. By contrast, the deutocereb-

ral appendage of chelicerates (pycnogonids, horseshoe crabs

and arachnids) is the chelicera or chelifore, a short appendage

consisting of two to four segments and involved in feeding.
Whereas the correspondence of arthropod head segments has

a basis in neuroanatomical and developmental genetic evi-

dence [6–11], the correspondence of antennae and chelicerae

remains unsubstantiated.

The best understood case of deutocerebral appendage

fate specification is that of antennae in the fruit fly Drosophila
melanogaster (figure 1). The Hox gene Antennapedia (Antp) is

required for leg identity in the thorax, where Antp represses

expression of the TALE-class gene homothorax (hth). This repres-

sion ensures that expression of hth in the outer margin of the

developing leg discs (which patterns proximal podomeres [leg

segments]) has minimal overlap with that of Distal-less (Dll,
which patterns distal podomeres); the proximally restricted

co-expression of hth and its cofactor extradenticle (exd) func-

tions to pattern proximal podomeres. Knockdown of Antp (or

http://rspb.royalsocietypublishing.org/
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alternatively, ectopic expression of hth in the legs) results in leg-

to-antenna transformation in the thorax [12–17]. Inversely, ecto-

pic expression of Antp in the antennal disc, where it is normally

not expressed (or alternatively, knockdown of antennal hth
expression) causes antenna-to-leg transformations [15–17].

The repressive interaction between hth and Antp has been pre-

sumed to be direct (but see [18]). In addition, the selector gene

spineless (ss), which acts downstream of Antp, Dll and hth/exd,

confers distal antennal identity in the antenna (figure 1). In

two holometabolous insect orders (D. melanogaster and four

species of the beetle genus Tribolium), antennal ss expression

arises within the Dll domain upon co-activation by hth/exd
and Dll. At later stages, ss represses expression of hth in the

distal tip of the antenna [14,19–21]. It has also been demon-

strated that Antp represses ss in the legs directly, by competing

with Dll for binding of the ss enhancer [18].

The similarity of the loss-of-function phenotypes of

both hth and its cofactor extradenticle (exd) indicates that

the Hox-binding Hth/Exd heterodimer fulfils multiple

roles during patterning of both body and appendage axes

[15,16,22]. Loss-of-function mutants of both hth and exd dis-

play: (i) segmentation defects along the antero-posterior axis

of the body; (ii) proximal defects along the proximo-distal

axis of appendages; and (iii) antenna-to-leg transformations.

Elements of the fruit fly-based antennal specification model

(figure 1a) have been validated in three other insects [23–26].

Intriguingly, RNAi-mediated knockdown of hth in the cricket

Gryllus bimaculatus causes all cephalic appendages, not just

antennae, to transform towards leg identity [26]. Barring

insects, functional data for arthropod hth are unavailable for

all other lineages in the arthropod tree of life.

In Chelicerata, the sister group to the remaining Arthropoda,

gene expression data for the Antp orthologue demonstrate

conserved expression throughout the posterior tagma (opistho-

soma) of multiple surveyed species, but absence from the

leg-bearing prosoma [9,27–29], suggesting that chelicerate

Antp is not involved in appendage identity specification

(figure 1b). Concordantly, functional data have demonstrated

that the spider Antp orthologue represses limb development in

the opisthosoma of Parasteatoda tepidariorum [30]. By contrast,

expression dynamics of hth are more comparable to insect

counterparts. In chelicerates, hth is expressed throughout

the developing limb buds in early stages of embryonic develop-

ment, but retracts from the distal-most parts of the appendages

in later stages [31,32], as in the antennal disc of D. melanogaster
[15,16] (figure 2). In late states of chelicerate development, the

degree of overlap between hth and Dll expression domains is

unique to each appendage type [31,32]. As in D. melanogaster,
this overlap is nearly complete in the deutocerebral appendages,

but not in the walking legs, where hth is absent from the two

distal-most podomeres [31–33] (figure 2).

This similarity of expression dynamics suggests that cheli-

cerate hth has a function in specifying appendage identity.

Therefore, we investigated the function of hth in the harvest-

man Phalangium opilio. We hypothesized that if patterning

of the antenna and chelicera is homologous, then knock-

down of Po-hth should result in a chelicera-to-leg homeotic

transformation (as observed for insect hth knockdowns

[13,16,19,24,26]). In support of this hypothesis, here we show

that RNAi-mediated knockdown of the single-copy hth
orthologue of P. opilio results in the same range of hth loss-of-

function phenotypes observed in insects, and specifically

includes homeotic transformation of chelicerae and pedipalps
towards leg identity. These data indicate that the mechanism

of deutocerebral appendage fate specification is conserved in

Chelicerata, and by extension, putatively across Arthropoda.
2. Material and methods
(a) Animal cultivation and gene cloning
Embryos of wild caught P. opilio and Centruroides sculpturatus were

obtained as described previously [29,34]. Embryos of Limulus poly-
phemus were kindly provided by B. Battelle and H. J. Brockmann

(Department of Biology, University of Florida) and were staged

according to [35]. Isolation of the P. opilio hth fragment from a

developmental transcriptome was previously reported [36]. We

similarly isolated hth and Dll orthologues of C. sculpturatus from

its corresponding developmental transcriptome [34]. Both frag-

ments were cloned and Sanger sequenced for verification of

transcriptomic assembly. PCR products were cloned using the

TOPOw TA Cloningw Kit with One Shotw Top10 chemically com-

petent Escherichia coli (Invitrogen, Carlsbad, CA, USA), following

the manufacturer’s protocol, and their identities verified by

sequencing. Two non-overlapping Po-hth fragments of approxi-

mately similar size (286 bp and 299 bp) were separately

amplified and cloned using internal primer pairs.

The hth orthologue from L. polyphemus was identified from

NCBI expressed sequence tags databases using tblastx. Primers

were designed to amplify an approximately 500 bp fragment

that was then cloned by RT-PCR using cDNA from stage 19 to

20 embryos and Sanger sequenced to verify identity.

All primer sequences are provided in the electronic sup-

plementary material, table S2. All verified hth sequences were

accessioned in GenBank (KP129111–129113).

(b) Fixation and whole mount in situ hybridization of
chelicerate embryos

Whole mount in situ hybridization was performed as previously

described for P. opilio [28], C. sculpturatus [34] and L. polyphemus
[37]. Riboprobe synthesis for hth and Hox genes also followed the

respective published protocols. Embryos were mounted in gly-

cerol and images were captured using an HrC AxioCam and

an Axio Zoom V.16 fluorescence stereomicroscope driven by

Zen (Zeiss).

(c) Double stranded RNA synthesis
Double stranded RNA (dsRNA) was synthesized with the MEGA-

scriptw T7 kit (Ambion/Life Technologies, Grand Island, NY,

USA) from amplified PCR product (above), following the manu-

facturer’s protocol. The synthesis was conducted for 4 h,

followed by a 5 min cool-down step to room temperature. A LiCl

precipitation step was conducted, following the manufacturer’s

protocol. dsRNA quality and concentration were checked using a

Nanodrop-1000 spectrophotometer (Thermo Scientific, Wilming-

ton, DE, USA) and the concentration of the dsRNA was

subsequently adjusted to 3.75–4.00 mg ml21.

(d) Embryonic RNAinterference
Embryos of P. opilio were collected from wild caught females

maintained in the laboratory. Embryos were dechorionated, dehy-

drated for 30 min and mounted on glass coverslips as described

previously [38]. Eggs from each P. opilio clutch were randomly

divided into control (20–30% of individuals) and hth-dsRNA

injection treatments (70–80% of individuals).

As controls, 161 embryos were injected with exogenous

dsRNA (a 678 bp fragment of DsRed) following a published pro-

tocol [38]. Animals were subsequently scored as wild-type

(normal development), or as dead/indeterminate (‘indeterminate’

http://rspb.royalsocietypublishing.org/
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indicates failure to complete development after six weeks post-

injection and is typically accompanied by abnormal development

at the site of injection). Results of injections are shown in the

electronic supplementary material, figure S1 and table S1.
Another 256 embryos were injected with a 768 bp fragment

of hth-dsRNA. Resulting embryos were classified into wild-

type, dead/indeterminate, Class I (strong) phenotype (animals

with defects in neurogenesis, anteroposterior (AP) segmentation,

http://rspb.royalsocietypublishing.org/
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truncated appendages and severe proximal leg defects) and Class

II (weak) phenotype (animals with proximal leg defects, homeotic

transformation of gnathal appendages to legs or non-chelate cheli-

cerae without homeotic transformation).

To exclude off-target effects caused by dsRNA injection, two

additional and non-overlapping fragments of Po-hth (248 bp and

259 bp) were injected independently into 95 embryos each (elec-

tronic supplementary material, figure S1). Resulting embryos

were classified the same way.
3. Results and discussion
(a) Podomeric boundaries of homothorax expression are

conserved in Arachnida
Patterns of gene expression in Mandibulata have revealed that

the proximal boundary of hth expression is variable in the deu-

tocerebral antenna. Despite functional correspondence with

D. melanogaster and P. opilio hth orthologues, hth expression in

the cricket G. bimaculatus is proximally restricted in the antenna

[26], whereas hth expression in the hemipteran Oncopeltus
fasciatus spans nearly all of its antenna [24] (figure 2). Therefore,

to infer whether any putative role of hth identified in P. opilio
is generalizable to other members of Chelicerata, we took

two approaches. First, we surveyed the literature for known

expression patterns of hth in chelicerates (e.g. spiders;
[32,33]). Second, we generated novel hth expression data for

the chelicerates C. sculpturatus (scorpion) and L. polyphemus
(horseshoe crab).

Our in situ hybridization experiments revealed that in contrast

to mandibulates, distal expression boundaries of all arachnid hth
orthologues examined were similar in stages wherein podomeres

are recognizable (figure 3). Nearly ubiquitous and strong

expression of hth occurred in chelicerae of Arachnida, except in

the distal-most parts of the chela. In posterior appendages, hth
expression domains also occurred broadly throughout the appen-

dage, as in P. opilio. By contrast, hth expression in L. polyphemus
extended only to the proximal part of the secondary article of

the chelicerae, and the proximal part of the tibia of posterior

appendages (figure 3). This difference may be attributable to

stage incompatibilities between L. polyphemus and the arachnids,

as horseshoe crabs undergo a series of embryonic moults with

concomitant saltational morphogenesis that is not observed in

Arachnida [35]. Absence of (or weaker) hth expression was

observed in the distal tips of all chelate appendages, suggesting

that the chela constitutes a distal bifurcation of the proximodistal

(PD) axis throughout Chelicerata.

Based upon the data presented here, taken together with

reported expression patterns in the millipede Glomeris margin-
ata and multiple spider species [32,33], we infer that broad

expression of hth and Dll in both proximal and distal territories

of deutocerebral appendages was present in the arthropod

http://rspb.royalsocietypublishing.org/
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common ancestor. The ancestral state of gene expression in the

common ancestor of Panarthropoda remains ambiguous, as hth
and Dll expression in the unsegmented deutocerebral appen-

dage ( jaw) of Onychophora is different from that of basal

arthropods (figure 2).

(b) A conserved pleiotropic spectrum of homothorax
phenotypes in insects and Phalangium opilio

In situ hybridizations for hth on embryos with strong hth
loss-of-function phenotypes showed decreased hth expression

in wild-type domains (electronic supplementary material,

figure S2), confirming effective RNAi-mediated knockdown

of hth expression. Of the 202 embryos surviving injection of

hth-dsRNA, 22% (n ¼ 45), displayed developmental defects

including antero-posterior segmental fusions in the prosoma,

proximal leg defects and/or homeotic transformation of gnathal

appendages. We classified embryos with antero-posterior seg-

mental fusions and/or whole-appendage truncations as Class

I (strong) phenotypes (n ¼ 21), and embryos with proximal

leg defects and/or homeotically transformed appendages as

Class II (weak) phenotypes (n ¼ 24). Mosaic phenotypes,

wherein loss-of-function defects were observed principally in

only one-half of the embryo, occurred in 43% of Class I (n ¼ 9)

and 100% of Class II (n ¼ 24) phenotypes. This range of pheno-

types was observed upon injection of a 768 bp fragment of

hth-dsRNA, and either of two non-overlapping fragments

amplified from the same Po-hth clone (248 and 259 bp; electronic

supplementary material, table S1 and figure S1), confirming

specificity of these hth knockdown phenotypes.

Embryos with Class I phenotypes (electronic supplemen-

tary material, figure S2) did not survive to hatching. Head

patterning defects included partial or complete loss of the

head lobe. Embryos in this phenotype class displayed fusions

of adjacent segments along the AP axis, typically the cheliceral

and pedipalpal segments. The labrum and/or some appen-

dages also failed to form. When present, appendages were

fused or showed proximal patterning defects, with proximal

podomeres and endites failing to form (electronic supplemen-

tary material, figure S2). We interpret these phenotypes to be

highly comparable with the AP segmentation defects and PD

proximal patterning defects observed upon knockdown of

hth in insects [24,26].

In contrast to all Class I phenotype embryos, some mosaic

Class II phenotype embryos (figure 4) survived to hatching,

enabling morphological corroboration of homeosis. In some

embryos with Class II phenotypes (n ¼ 7), a tarsus-like struc-

ture with a single terminal claw and leg-like setation patterns

formed in place of the chela, indicating homeotic transform-

ation to leg identity (figure 4g). In embryos with more

severe Class II phenotypes (n ¼ 13), distal elements of both

chelicera and pedipalp were transformed towards leg-like

identity, as inferred from podomeres with leg-like setation

patterns and absence of pedipalpal spurs (figure 4h).

The harvestman hth knockdown appendage phenotypes

described above are remarkably similar to those observed

in insects. Among hemimetabolous insects, in the cricket

G. bimaculatus, parental RNAi-mediated knockdown of hth
resulted in similar transformation of all cephalic appendages

towards leg identity in some embryos, and comparable fusion

of adjacent segments in stronger phenotypes [26]. In parental

RNAi experiments with the milkweed bug O. fasciatus,
weaker hth phenotypes consisted of distal labium (second
maxilla)-to-leg transformations, and truncation of antennae

[24]. The similar range of phenotypes observed upon

knockdown of hth orthologues in multiple insects and the

chelicerate exemplar P. opilio suggests evolutionary conserva-

tion of hth function in proximo-distal patterning and cephalic

appendage specification over 550 million years of arthropod

evolution. The implicit serial homology of antennae and cheli-

cerae is consistent with transitional morphologies observed in

the fossil record, such as the antenniform chelicerae of the

Silurian synziphosurines Dibasterium durgae and Offacolus
kingi [39,40]. The unique deutocerebral appendages of these

stem-horseshoe crabs elude facile characterization, as they are

interpreted to bear a large number of articulated segments

(typical of antennae) and also a distal chela composed of two

segments (typical of chelicerae). Similar comparisons have

also been made between modern chelicerae and a series of

‘great-appendage’ arthropod fossils [8,41], and particularly so

for the reconstructed deutocerebral appendages of leanchoiliids

that exemplify the intermediate condition of chelicerae (three

distal axes, dentition) and antennae (three flagella with numer-

ous antennules) [42]. Taken together with the absence of Hox

gene expression in the deutocerebral segment of all surveyed

panarthropods [6,10,43], as well as the conservation of hth func-

tion in insects and a chelicerate (this study), the existence of

such transitional morphologies in the fossil record suggests

that different aspects of the ancestral deutocerebral appendage

were retained by the mandibulate and chelicerate lineages. The

morphological distinction between antenna and chelicera may

thus result from differential losses of downstream targets

of hth that occurred in a lineage-specific manner. The role of

ss as one such downstream target of hth is currently under

investigation in chelicerates (P. P. Sharma, W. C. Wheeler and

C. G. Extavour 2015, personal communication).

With respect to conservation of gene interaction, knock-

down of the hth cofactor exd in G. bimaculatus results in similar

homeotic transformation of gnathal appendages towards leg

identity, with accompanying loss of gnathal Hox gene

expression (Deformed and Sex combs reduced; [25]). The similar

phenotypes resulting from knockdown of either hth or exd reflect

the requirement of Hth for transport of Exd to the nucleus, and

the instability of Hth in the absence of Exd [22,44]. However,

knockdown of hth in G. bimaculatus does not eliminate anterior

Hox gene expression, in contrast to knockdown of exd in

the same species [25,26]. Comparably, we observed dimini-

shed, but not eliminated, expression of the Hox genes labial,
proboscipedia, or Deformed in Class I P. opilio embryos (electronic

supplementary material, figure S3).

This finding is suggestive of a conserved, if poorly under-

stood, mechanism whereby hth interacts with Hox genes,

such that cephalic appendage identities are specified by vary-

ing hth expression, as determined by Hox input [26]. Indeed,

Hth and Exd are bona fide Hox cofactors in D. melanogaster
[22,44–46]. However, functional data for chelicerate Hox

genes are limited to analysis of Antp, and thus the interaction

of hth and anterior Hox genes is unknown for chelicerates

[30]. In addition, Antp in the spider P. tepidariorum appears

to have a function that is convergent upon the role of Ultra-
bithorax in insects (i.e. repressing appendage formation),

suggesting that Hox function in appendage-bearing segments

of mandibulates and chelicerates is not directly comparable

(figure 1). An alternative interpretation of the cricket and har-

vestman data may also be that hth RNAi phenotypes are

generally weaker than exd RNAi phenotypes, and that

http://rspb.royalsocietypublishing.org/
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eliminating hth expression would result in loss of Hox

expression in both species [26].

(c) A possible role for homothorax in patterning
terminal chelae

An outstanding question regarding the evolution of the

arthropod appendage is the mechanism whereby chelate
appendages acquired a chela, i.e. a distal bifurcation of the

PD axis. In the spectrum of hth knockdown phenotypes in

P. opilio, we observed that in the weakest of the Class II pheno-

types (n ¼ 4), the chelicerae retained dentition and cheliceral

setation (i.e. retained cheliceral identity), but the mobile digit

(i.e. distal article) was reduced (figure 4j ). In the P. opilio
chela, the mobile digit is the smaller of two distal buds that

strongly expresses hth prior to segmentation.
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One possible mechanism for the bifurcation of the distal

cheliceral limb bud is recruitment of hth itself for patterning

this secondary axis. Overexpression of hth in D. melanogaster
results in just such a duplication of the antennal axis at the a3

segment [47]. Together with similar expression patterns of

hth in other chelate appendage termini, these data suggest a

common mechanism whereby chelae are formed in various

arthropod appendages. Beyond RNAi approaches in scorpions

(chelate chelicerae and pedipalps), horseshoe crabs (all proso-

mal appendages chelate) or such mandibulates as pauropods

(bifurcating antennae), this hypothesis could also be tested in

future through misexpression of hth in non-chelate appendages

of emerging model chelicerates like the spider P. tepidariorum,

with the prediction that ectopic hth expression would cause

distal axis duplication in the pedipalps and legs (as in

D. melanogaster). At present, such functional tools are presently

not available for chelicerates, being limited to RNAi in spiders,

mites and harvestmen.
150698
4. Conclusion
Our results reveal an ancestral mechanism whereby cephalic

and locomotory appendages are differentiated in arthropods.

RNAi-mediated gene knockdown of a chelicerate hth ortholo-

gue demonstrates extraordinary conservation of multiple
functions, including specification of gnathal appendage iden-

tity and proximo-distal axial patterning. The transformation

of both the antenna and the chelicera towards leg identity

upon knockdown of hth, together with the absence of any

Hox gene expression in their respective segments, is consist-

ent with the serial homology of deutocerebral appendages.

Future investigations should emphasize identification of line-

age-specific (i.e. antennal versus cheliceral) deutocerebral

selector genes, towards testing the hypothesis that variation

in deutocerebral appendage morphology is attributable to

evolution in the downstream targets of hth.
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