Convergent developmental patterns underlie the repeated evolution of adhesive toe pads among lizards

AARON H. GRIFFING1,*, TONY GAMBLE1,2,3, MARTIN J. COHN4, and THOMAS J. SANGER4,5,*

1Department of Biological Sciences, Marquette University, PO Box 1881, Milwaukee, WI 53201, USA
2Milwaukee Public Museum, 800 W. Wells St., Milwaukee, WI 53233, USA
3Bell Museum of Natural History, University of Minnesota, 2088 Larpenteur Ave. W., St. Paul, MN 55113, USA
4Department of Molecular Genetics and Microbiology, UF Genetics Institute, University of Florida, Gainesville, FL 32610, USA
5Department of Biology, Loyola University Chicago, 1032 W. Sheridan Rd, Chicago, IL 60660, USA

Received 17 September 2021; revised 24 November 2021; accepted for publication 25 November 2021

How developmental modifications produce key innovations, which subsequently allow for rapid diversification of a clade into new adaptive zones, has received much attention. However, few studies have used a robust comparative framework to investigate the influence of evolutionary and developmental constraints on the origin of key innovations, such as the adhesive toe pad of lizards. Adhesive toe pads evolved independently at least 16 times in lizards, allowing us to examine whether the patterns observed are general evolutionary phenomena or unique, lineage-specific events. We performed a high-resolution comparison of plantar scale development in 14 lizard species in Anolis and geckos, encompassing five independent origins of toe pads (one in Anolis, four in geckos). Despite substantial evolutionary divergence between Anolis and geckos, we find that these clades have undergone similar developmental modifications to generate their adhesive toe pads. Relative to the ancestral plantar scale development, in which scale ridges form synchronously along the digit, both padded geckos and Anolis exhibit scansion formation in a distal-to-proximal direction. Both clades have undergone developmental repatterning and, following their origin, modifications in toe pad morphology occurred through relatively minor developmental modifications, suggesting that developmental constraints governed the diversification of the adhesive toe pad in lizards.

INTRODUCTION

Morphological evolution involves processes both intrinsic and extrinsic to the organism (Wake & Roth, 1989; Müller & Wagner, 1991; Wake, 1991; Wake & Larson, 2003). Processes external to an organism, such as selection, shape a species to its environments and drive adaptation. The intrinsic rules of development dictate the type, scale and frequency of variation produced by a species (Alberch, 1980, 1989; Oster & Alberch, 1982; Cheverud et al., 1983; Maynard-Smith et al., 1985; Brakefield, 2006; Olson, 2012, 2019). However, the variation that is produced by a given developmental system is not distributed equally in all directions – some variants are produced more often than others and some conceivable options are not observed at all. These developmental biases, or constraints, have the potential to affect the rate or direction of morphological evolution over both small and large timescales (Maynard-Smith et al., 1985; Wake, 1991; Beldade & Brakefield, 2002; Brakefield, 2003; Arthur, 2004; Losos, 2011; Wake et al., 2011). Understanding the ways that the variation-generating mechanisms of development change over the history of a diversifying lineage may shed light on the way integrated systems respond to selection and what combination of developmental processes the variation that selection acts upon arises from. Yet, relative to studies describing patterns of phenotypic diversity, comparatively little research has investigated how the
developmental mechanisms that produce selectable variation change during the origin and adaptive diversification of complex morphological traits.

Evolutionary innovations are of particular interest to those investigating morphological diversity. An innovation is defined as an evolutionarily novel structure that provides an organism access to new adaptive zones (see Müller & Newman, 2005 for a nuanced distinction between novelty and innovation). One such example of morphological innovation is the adhesive toe pads of lizards. Digital adhesion has independently evolved at least 16 times in three major squamate groups: multiple times within geckos, and once each in Anolis lizards and the Prasinohaema+Lipinia clade of skinks (Peterson, 1983; Irschick et al., 1996; Skinner et al., 2011; Gamble et al., 2012; Higham et al., 2017; Russell & Gamble, 2019). Digital adhesion is facilitated by expanded regions of the plantar surface: toe pads. Externally, these pads consist of modified scales (lamellae and scansors) that bear setae (hair-like, hypertrophied projections of the epidermis) and foster adhesion via frictional interactions and van der Waals forces (Fig. 1; Ruibal & Ernst, 1965; Maderson, 1970; Williams & Peterson, 1982; Autumn et al., 2002; Russell, 2002; Autumn, 2006). Although both lamellae and scansors are highly specialized and possess fields of setae, scansors differ from lamellae by exhibiting tendinous connections to the digits and in some cases vascular networks or adipose pads that facilitate control of the individual units (Russell, 1981, 1986; Bergmann & Russell, 2003; Russell et al., 2019). Toe pads of Anolis and geckos are composed of both scansors and lamellae (Bergmann & Russell, 2003; Russell & Delaugerre, 2017; Russell & Gamble, 2019; Russell et al., 2019; Russell & Garner, 2021).

Figure 1. Morphology of adult lizard digits. Scanning electron micrographs depicting plantar views of adult Sceloporus undulatus (padless iguanian), Anolis sagrei (toe pad-bearing iguanian) and Lepidodactylus lugubris (toe pad-bearing gecko) pes, digit IV. Sceloporus undulatus exhibits imbricate scales without setae. Anolis sagrei and L. lugubris exhibit digital pads composed of seta-bearing scansors.
Toe pads increased the efficiency of locomotion in vertical habitats in the ancestral lineages of these now diverse clades (Russell, 1979; Bauer et al., 2005; Losos, 2009; Gamble et al., 2012; Higham et al., 2017; Fontanarrosa et al., 2018; Russell & Gamble, 2019; Miller & Stroud, 2021). Within toe pad-bearing groups, markedly divergent toe pad forms allow different species to further partition niche space by accessing different micro-habitats and/or substrates (Elstrott & Irschick, 2004; Russell & Delaagnerre, 2017).

Geckos (infraorder Gekkota) comprise nearly 2100 described species (Uetz et al., 2021), around 1100 of which exhibit adhesive toe pads (Gamble et al., 2012; Russell & Gamble, 2019). Ancestrally, geckos were padless, yet adhesive pads independently arose approximately 14 times in this clade (Gamble et al., 2012; Russell & Gamble, 2019). Perhaps just as striking as the repeated gains and losses of toepads is the diversity of overall toepad morphologies within and among the independent evolutionary origins. Gecko toepad morphologies are typically divided into three categories: basal pads where the scansors and lamellae are located ventral to the intermediate phalanges, terminal fan pads where the adhesive apparatus is at the tip of the digit in a broad, fan-like shape, and terminal leaf pads where flaring, paired adhesive apparatuses are located around the tip of the digit (Gamble et al., 2012; Russell & Gamble, 2019). However, this is a gross oversimplification as species with basal pads can exhibit dramatically different numbers of scansors, phalangeal shapes and angle, presence of paraphalangeal elements, tendinous arrangement, and muscle arrangement (Russell, 1972, 1976, 1979). Differences in scansor numbers have been associated with differences in gecko toe pad area and, in turn, different maximum body sizes and exploitable habitats (e.g. Hecht, 1952; Johnson & Russell, 2009). However, the relationships between scansor numbers, toe pad areas and niche partitioning between congeners have not been studied to the degree in which they have been studied in Anolis lizards.

Adhesive toe pads evolved once within iguanian lizards, at least 70 Mya in the ancestor to extant Anolis lizards (Collette, 1961; Peterson, 1983; Losos, 2009; Gamble et al., 2012; Román-Palacios et al., 2018). This genus has over 400 recognized species, residing primarily within arboreal habitats of the Caribbean islands, and Central and South America (Losos, 2009). The toe pads of Anolis are less diverse in scansor width, orientation and elaboration than those of geckos; however, these toe pads diversified in pad size and in the number of scansors as species occupied different parts of the arboreal canopy. Anolis species that live near the top of the canopy tend to have larger toe pads with more scansors compared to anoles that live closer to the ground and have smaller toe pads with fewer scansors (Fig. 2; Glossip & Losos, 1997; Beuttell & Losos, 1999; Macrini et al., 2003). A species living close to the ground (e.g. trunk-ground anoles) may have as few as 15–20 scansors on pedal digit IV while a species living higher in the canopy may have as many as 50 scansors (e.g. crown giant anoles; Glossip & Losos, 1997).

Despite their diversity of form, unequivocal importance in locomotion and presence in hundreds of lizard species, only a handful of disparate studies have focused on the development of lizard toe pads (Rosenberg et al., 1992; Khannoon, 2015; Khannoon et al., 2015; Alturk & Khannoon, 2020; Griffing et al., 2021). To date, no studies have addressed toe pad development in a comparative context, particularly comparing the independent origins of anole and gecko toe pads. A ‘model clade’ approach is required to determine the extent of similar and unique developmental modifications that occurred between anole and gecko toe pads as well as within the multiple origins of gecko toe pads (Sanger & Rajakumar, 2019). Herein we investigate how developmental processes have evolved during the repeated origin and diversification of adhesive toe pads in Anolis lizards and geckos. These clades are hypothesized to have diverged from one another ~200 Mya (Zheng & Wiens, 2016). The pattern of phenotypic convergence provides us with the opportunity to ask whether there are multiple ways to develop an adhesive pad. By including ancestrally padless outgroups in this analysis we also address whether there was a dramatic restructuring in development at the origin of these phenotypic innovations. Due to the diversity in mature toe pad morphologies (Fig. 2) and the phylogenetic distance between taxa with adhesive digits, we hypothesized that these taxa develop pads through distinct developmental processes.

MATERIALS AND METHODS

We collected embryos from 14 lizard species. These included four independent origins of adhesive toe pads in geckos, an ancestrally padless gecko (Eublepharis macularius), eight Anolis species representing the full diversity of toe pad proportions and a padless iguanian outgroup (Sceloporus undulatus). We dedicated most of our sampling efforts to seven focal species: Anolis carolinensis, A. sagrei, S. undulatus, Correlophus ciliatus, E. macularius, Lepidodactylus lugubris and Hemidactylus turcicus. These species readily produced eggs in captivity and could provide complete developmental series. We opportunistically sampled embryos from the seven additional species that produced fewer eggs or whose developmental staging
Figure 2. Convergence and divergence in adhesive toe pad morphology. Time-calibrated (millions of years) phylogeny illustrating generic relationships of geckos with squamate outgroups. Tree topology and tip colours correspond to toe pad character states defined by Russell & Gamble (2019). Bold type indicates genera investigated in this study.
criteria were not well established. This allowed us to test whether our evolutionary hypotheses are broadly generalizable or limited in scope. Among anoles, the toe pads of the longest digit (pes, digit IV) has been studied extensively in comparative and functional studies (e.g. Losos & de Queiroz, 1997; Knox et al., 2001; Pinto et al., 2008). Herein, we follow this tradition but also acknowledge that not every toe has the same number of lamellae/scansors and some digits may lack them altogether.

Embryonic staging series differ in how developmental stages are discretized and named for different species. For example, 19 stages (referred to as St 1–19) were previously discretized for A. sagrei (Sanger et al., 2008b), while most gecko staging tables follow the numbering of Dufaure & Hubert (1961) and are discretized into 14–16 stages (Wise et al., 2009; Griffing et al., 2019, 2021). Furthermore, anoles exhibit a markedly shorter post-ovipositional time in ovo than geckos (e.g. 28 vs. 66 days post-oviposition; Sanger et al., 2008b; Griffing et al., 2019). For ease of comparison, we allocate our sampled embryos into larger categories, using the approximate numbering scheme of Griffing et al. (2019, 2021): late stage 35 – early stage 36, late stage 36 – early stage 38, late stage 37– early stage 38, early stage 39 – late stage 40, and stage 41 (Fig. 3). Following Griffing et al. (2019), stage 35 is partially characterized by a reduction in the latter half of digital webbing. Webbing is completely recessed by stage 36. Between stages 36 and 37, the first signs of plantar scales and scansors appear. Plantar digital development progresses and is superficially complete by stage 41. Specific days post-oviposition for different stages are included in the Supporting Information (Tables S1 and S2).

Anolis and Sceloporus husbandry and adult morphology

We describe toe pad morphogenesis for two anole species with variations in the general anole toe pad morphology, A. sagrei and A. carolinensis (Fig. 2). Anolis sagrei tends to live close to the ground and has relatively narrow toe pads with few scansors (15–20; Schoener, 1975; Glossip & Losos, 1997). Scansor counts begin at the distalmost extremity pad and continue to the joint between the third and fourth phalanx from the base of the longest toe (pes, digit IV). In contrast, A. carolinensis lives relatively high in the canopy and has wider toe pads with many scansors (24–27; Schoener, 1975; Glossip & Losos, 1997). Sceloporus undulatus is a padless, semi-arboreal iguanian lizard from the eastern USA. Females of A. sagrei and Sceloporus undulatus were wild caught from Gainesville, Florida, USA. We purchased gravid female A. carolinensis from a commercial supplier (Candy’s Quality Reptiles, Reserve, LA, USA). We maintained gravid females of these species in captivity as previously described (Sanger et al., 2008a). Briefly, females were housed in cages of four to six individuals with perches and an artificial potted plant for the lizards to lay eggs in. We checked the pots for eggs every morning, after which time we incubated eggs in moist vermiculite at 27 °C until the time of dissection (12–20 days). We removed the embryos from eggs following protocols detailed in Sanger et al. (2008a) and the developmental stage of each embryo was identified by reference to previous characterization of Anolis embryonic development (Sanger et al., 2008b).

Gecko husbandry and adult morphology

We describe toe pad morphogenesis for three geckos, the arboreal C. ciliatus (Diplodactylidae), the arboreal L. lugubris (Gekkonidae) and the semi-arboreal H. turcicus (Gekkonidae). These species have independently evolved the basal toe pad morphology (Gamble et al., 2012; Russell & Gamble, 2019). The scansors of C. ciliatus are undivided, with 16–21 mediolaterally broad and distoproximally short scansors (Bauer & Sadlier, 2000). The toepads of L. lugubris possess 10–12 scansors, of which the two distalmost are medially divided, forming half-scansors (Russell, 1972). The toe pads of H. turcicus possess 8–11 scansors and are considered ‘complex’ with regard to their scansorial morphology (Russell, 1976; Leviton et al., 1992). With the exception of the most distal and the most proximal scansors, the toe pads of H. turcicus are mediolaterally divided, forming two separate columns of half-scansors (Russell, 1972, 1976). As with anoles, we focus our descriptions on the longest toe (pes, digit IV). Furthermore, we describe plantar scale morphogenesis of the ancestrally padless and terrestrial gecko, E. macularius (Eublepharidae; Russell & Gamble, 2019).

The details of gecko husbandry are described elsewhere (C. ciliatus, Seipp & Henkel, 2000; De Vosjoli et al., 2003; E. macularius, Thorogood & Whimster, 1979; Vickaryous & Gilbert, 2019; H. turcicus, Konečný, 2002; L. lugubris, Griffing et al., 2018). We collected embryos of hard-shelled gecko species (H. turcicus, L. lugubris) following Griffing et al. (2018) and soft-shelled species (C. ciliatus, E. macularius) following Sanger et al. (2008a) and Vickaryous & Gilbert (2019). Briefly, at the time of embryo removal, hard-shelled eggs are removed from the cage using a sharp scalpel when glued to the cage (L. lugubris) or gently by hand (all other species) to avoid damaging the embryo. The developmental stage of each embryo was identified by reference to previous characterizations of gecko embryonic development (Wise et al., 2009; Griffing et al., 2019, 2021).
We opportunistically collected embryos of additional anole and gecko species to test (1) whether species with distinct toe pad morphologies pass through similar stages as our focal species and (2) whether species-specific morphologies (e.g. scansion number) are established during toe pad morphogenesis. We collected informative embryos from the leaf-litter specialist gecko, *Sphaerodactylus macrolepis* (Sphaerodactylidae), which represents an additional independent origin of the gecko adhesion system (Fig. 2). *Sphaerodactylus macrolepis* has an asymmetric, distal toe pad that is composed of a single scansion. Setae form directly on an enlarged pad lateral to the claw. Aspects of *Sphaerodactylus* husbandry are detailed by Bruse et al. (2005). We also integrate toe pad development data from previously published reports of two gecko species for which we were unable to acquire new embryos, *Ptyodactylus guttatus* (Rosenberg et al., 1992) and *Tarentola annularis* (Khannoon, 2015; Khannoon et al., 2015).
Ptyodactylus guttatus exhibits a terminal fan toe pad with 10 or 11 scansors on each side of the fan (Rosenberg et al., 1992) while T. annularis exhibits a basal pad with 17–19 undivided scansors. We opportunistically sampled six additional anole species across the range of toe pad morphologies ranging from pads with relatively few scansors to those with many: Anolis angusticeps (14 scansors), A. brevirostris (19 scansors), A. cybotes (12 scansors), A. lineatopus (13 scansors), A. grahami (27 scansors) and A. equestris (50 scansors). With the exception of embryos of A. angusticeps and A. equestris, these embryos were collected as part of a previous study (Sanger et al., 2012).

RESULTS

SCELOPORUS PLANTAR SCALE MORPHOGENESIS

We examined plantar scale development in 12 Sceloporus undulatus embryos. Digital webbing is fully reduced by embryonic day 24. The digital scales of Sceloporus undulatus form between embryonic days 27 and 35. Digital scale development begins several days after the interdigital webbing is fully reduced at approximately the same time claw formation begins. The ridges of the first scales form near the base of the digit (Fig. 3; Supporting Information, Fig. S1). Scales then proceed to develop synchronously along the length of the digit, becoming increasingly distoproximally asymmetrical throughout development. Plantar scale development is complete by stage 41.

ANOLIS TOE PAD MORPHOGENESIS

We examined toe pad morphogenesis in 19 embryos of A. sagrei spanning 12–18 embryonic days and 27 embryos of A. carolinensis spanning 14–20 embryonic days. In spite of the differences in adult morphology, early toe pad morphogenesis follows the same stereotypical pattern (Fig. 3; Supporting Information, Figs S2, S3). Immediately following regression of digital webbing, an enlarged pad forms ventral to the third phalanx that is lateromedially expanded. This pad is then subdivided by the emergence of seven to eight horizontal ridges across the width of the pad. These ridges preceded any signs of plantar scale development. No individuals were observed with fewer than seven ridges. New ridges form in the distoproximal direction as the pad expands towards the fourth phalanx. As new ridges form proximally, distal ridges begin to take on the exaggerated distoproximal asymmetry of mature scansors. The number of scansors observed in adults of these species is established by the end of toe pad morphogenesis.

EUBLEPHARIS PLANTAR SCALE MORPHOGENESIS

We examined plantar scale development in nine E. macularius embryos. Digital webbing is fully reduced by embryonic day 26. The digital scales of E. macularius form from embryonic days 27–41. The ridges of all plantar scales form synchronously along the length of the digit, becoming increasingly distoproximally asymmetrical throughout development (Fig. 3; Supporting Information, Fig. S4). We did not observe scales forming at the base of the digit preceding the synchronous development along the digit as observed in Sceloporus undulatus.

GECKO TOE PAD MORPHOGENESIS

We examined toe pad morphogenesis in 36 embryos of C. ciliatus spanning 28–49 embryonic days, 34 embryos
of \textit{L. lugubris} spanning 28–48 embryonic days and 12 embryos of \textit{H. turcicus} spanning 20–38 embryonic days. Like \textit{Anolis} spp., species-specific morphologies of \textit{C. ciliatus}, \textit{L. lugubris} and \textit{H. turcicus} are established during toe pad morphogenesis (Fig. 3).

In all species of toe pad-bearing gecko we examined, ridges indicating scanner development preceded any signs of plantar scale development. In \textit{C. ciliatus}, regression of digital webbing leaves a thin margin of tissue along the edge of each digit, giving them a wide, flat appearance. Four horizontal ridges then form along the widest portion of the digit, excluding the thin margin of tissue adjacent to the digital condensation (Fig. 3; Supporting Information, Fig. S5). We did not observe \textit{C. ciliatus} with fewer than four ridges. After the initial ridges form, additional ridges form both proximally and distally until the entire plantar surface of the digit is covered by immature scanners and lamellae. During this ridge extension period, pre-existing ridges expand in a mediolateral direction, taking up the full width of the digit. As this expansion unfolds, ridges begin to take on their distoproximally asymmetrical appearance.

In \textit{L. lugubris}, an enlarged pad can be readily observed on the ventral portion of the digit shortly after digital web reduction (Fig. 3; Supporting Information, Fig. S6). The most distal portion of the pad is then subdivided by three to four small, horizontal ridges. These ridges extend across the entire width of the pad. We did not observe \textit{L. lugubris} embryos with fewer than three ridges. A small furrow then splits these ridges medially. Additional ridges form proximally starting from this initial set of ridges. As these new ridges form, the most distal ridges acquire their characteristic distoproximal asymmetry, appearing to grow in a distolateral/distomedial direction and becoming angled towards the midline furrow.

Following digital web reduction, an enlarged pad forms on the ventral portion of the digit of \textit{H. turcicus} (Fig. 3; Supporting Information, Fig. S7). The pad is then subdivided by four to five horizontal ridges that extend across the entire width of the pad. Additional ridges form proximally starting from this initial set of ridges while expanding in size in both distoproximal and mediolateral directions. The ridges become ‘V’-shaped as a furrow appears down the midline of the digit and the scannerial ridges appear to grow in a disto-laterral/distomedial direction. The process subdivides five of the eight total scanner rows – each left and right component of the scanner rows takes on a rounded shape.

OPPORTUNISTIC SAMPLING

We collected informative embryos for six additional \textit{Anolis} species representing the spectrum of toe pad dimensions and scanner/ lamellar number (Fig. 4; Supporting Information, Fig. S8). The morphologies we observed were consistent with the detailed descriptions of \textit{A. sagrei} and \textit{A. carolinensis} (Fig. 3). We observed a digital pad without ridges in one of these species, \textit{A. equestris}, a species with relatively large pads and as many as 50 scanners. Individuals of four of the six species we sampled were found with seven to eight horizontal ridges subdividing an enlarged pad. No individuals with scanner rows present were observed with fewer than seven ridges in any species. Individuals of all six of the \textit{Anolis} species we opportunistically sampled were observed with an intermediate number of ridges compared to what is observed in adults of these species. In all cases, the adult number of scanners is established by the end of embryonic development in all species.

We also sampled an additional gekko species, \textit{Sphaerodactylus macrolepis} (eight informative embryos), which has mediolaterally asymmetric distal ‘leaf-toe’ pads. As above, the species-specific morphologies of this species are established during toe pad morphogenesis. Toe pad development in \textit{Sphaerodactylus macrolepis} begins with the formation of an enlarged pad on one side of the toe (Fig. 4; Supporting Information, Fig. S9). At this time the claw retains its mid-sagittal location. Digital scale development proceeds from proximal to distal. The mature pad, which is not subdivided by multiple scanners, continues to expand until it displaces the claw to the side of its original mid-sagittal location.

DISCUSSION

Despite diverging ~200 Mya (Zheng & Wiens, 2016) and dramatic differences in adult morphology (Fig. 2), the early development of anole and gecko toe pads is remarkably similar. The early development of scales and their evolutionary derivatives, such as feathers and hair, are broadly conserved among vertebrates (Headon & Overbeek, 1999; Chuong et al., 2000; Harris et al., 2002, 2008; Widelitz, 2008; Di-Poi & Milinkovitch, 2016; Wu et al., 2017; Cooper et al., 2019). Adhesive lamellae and scanners have long been considered modified planar scales (Collette, 1961; Hiller, 1968; Russell, 1975); however, the process by which toe pad scanners/lamellae form is distinct from the presumably ancestral pattern of non-adhesive planar scale development observed in \textit{Sceloporus undulatus}, \textit{E. macularis} (Figs 3, 5A) and \textit{Pogona vitticeps} (Cooper et al., 2019). In each of these species, representing three families of lizards, scales form nearly synchronously across the length of the digit. In contrast, the toe pads of all \textit{Anolis} and gecko species we investigated pass through four similar stages.
following digital webbing reduction (Fig. 5B): (1) pad formation through hypertrophy of digital tissues, (2) pad subdivision in the distal portion of the digit, (3) pad extension in a distal-to-proximal direction and (4) elaboration. The results suggest that Anolis and geckos have independently converged on a similar developmental pattern to generate their adhesive toe pads. The distal-to-proximal extension of the scale ridges deviates from the majority of vertebrate limb development patterns, which often develop from proximal to distal. For example, within the hand and foot, digits develop in a proximal-to-distal sequence (Saunders, 1948; Summerbell, 1974). After the origin of the toe pad, diversity in toe pad morphology is generated by ‘tinkering’ with this newly established developmental shift. More specifically, the diversity observed in adult toe pad morphology is determined by modifying the position of the toe pad or adjusting developmental timing, whereby some species progress to later stages of the developmental sequence than others (Fig. 5B). Both geckos and anoles underwent a dramatic reorganization of their plantar scale developmental programmes at the origin of toe pads. Based on this observation, we hypothesize that the ancestral scale development mechanism is not capable of generating variation along the axes necessary to form an adhesive pad.

Our results show that a pad is formed before lamellae or scanners arise. This pattern is present in anoles, geckos with terminal pads, and geckos with basal pads, all of which arose independently (Rosenberg et al., 1992; Khannoon, 2015; Khannoon et al., 2015;...
We speculate that enlarged lamellae/scansors cannot be supported by a relatively narrow toe. The supportive structure of the enlarged pad is a necessary prerequisite for the development and function of lamellae and scansors. Future manipulative experiments that attempt to dissociate pad development from lamellae/scansor development and/or attempt to grow an adhesive pad on a non-padded toe will be needed to fully test this hypothesis.

Following the origin of adhesive toe pads, adaptive changes in toe pad morphology are consistently

Figure 5. Schematics illustrating the current understanding of plantar scale morphogenesis of lizards. A, morphogenesis of padless lizard toes. B, morphogenesis of pad-bearing lizard toes. Arrows illustrate regions and direction of growth.
generated through similar developmental modifications. This agrees with the predictions of previous authors (e.g. Jacob, 1977; Duboule & Wilkins, 1998; Müller & Newman, 2005) that adaptive variation would arise from relatively small modifications to developmental programs, not large-scale developmental repatterning. This pattern is most prominent in our data on Anolis toe pad development. Within Anolis, the toe pad evolved only once, ~70 Mya (Losos, 2009; Román-Palacios et al., 2018). Our study examined development of species with ~15–50 scanners. Despite this range, variation in scanner number is consistently the result of modifications to the stages of pad expansion. Species with relatively few scanners, such as A. sagrei, stop producing scanners at an earlier stage than species with more scanners, such as A. carolinensis or A. equestris. Furthermore, regardless of adult morphology, all Anolis species begin with the same base-state of seven to eight ridges (Figs 3, 4). Although our intra-clade sampling of geckos is not as dense as it is in anoles, we predict that the same pattern will be found in other species from within each independent origin of toe pads.

Compared to anoles, geckos exhibit a striking diversity of adult pad morphologies, varying in both their position and their complexity (Fig. 2; Russell, 1972; Russell & Gamble, 2019). The spinulose Oberhäutchen layer of the epidermis is ancestral to geckos, including padless taxa, which has facilitated repeated elaborations into adhesive setae (Madsen, 1970; Stewart & Daniel, 1972; Russell, 1976, 1979; Peattie, 2008). The full spectrum of gecko toe pad diversity is reflected in the characteristic developmental sequence of toe pads (Fig. 5B); species with relatively simple scanners stop at earlier developmental stages than those with more complex toe pad elaborations. For example, following reduction of the interdigital webbing, Sphaerodactylus stops relatively early in the developmental sequence, creating a bulbous, distal toe pad covered in setae. Its remaining digital scales develop in the typical ancestral pattern (Figs 4, 5B; Supporting Information, Fig. S9). Additional toe pad complexity is added in Correlophus (Griffing et al., 2021), Tarentola (Khannoon, 2015) and Ptyodactylus (Rosenburg et al., 1992) as horizontal rows of scanners are laid down from distal to proximal. Several key stages are missing from the Ptyodactylus embryological series to know whether the scanners form perpendicular, or at an angle, to the long axis of the toe. Finally, following pad extension, H. turcicus and L. lugubris develop toe pad elaborations, leading to the varying degrees of toe pad scanner bifurcation (Figs 3, 5B). These elaborations appear to be achieved through distolateral growth of individual scansional ridges which create the appearance of scanner bifurcation. Through these simple modifications, geckos have repeatedly 'escaped' the ancestral constraint of epidermal appendage development (Fig. 5).

The newfound evolutionary and developmental lability, relative to non-padded lizards, is evident in the remarkable diversity in toe pad morphology not observed in other clades (Fig. 2; Russell & Gamble, 2019). In spite of other developmental possibilities and the dramatic divergence away from the ancestral pattern of toe pad development, this pattern suggests that inherent developmental constraints limit the ways in which adhesive toe pads and scales can form. Further research into the histological patterns and molecular regulation of toe pad morphogenesis will help us to understand the contingencies of pad and scale development and will be critical to further unravelling the complexities of adhesive toe pad evolution.

Innovations, such as the adhesive toe pad, have played a central role in studies examining the dynamic process of phenotypic evolution (Müller, 1990; Müller & Wagner, 1991; Heard & Hauser, 1995; Müller & Newman, 2005; Rabosky, 2017). Previous authors have predicted that key innovations arise following a significant repatterning of development while adaptive changes in morphology occur through relatively minor tinkering of established developmental processes (Jacob, 1977; Wake & Roth, 1989; Müller, 1990; Müller & Wagner, 1991; Wagner & Müller, 2002; West-Eberhard, 2003). Our results on the origin and diversification of the adhesive toe pad provide robust evidence in support of these predictions – toe pads are initially formed through a repatterning of digital development and subsequently diversify in shape and size through slight modifications. Future studies should carefully consider the roles that evolutionary history and constraint play in shaping the developmental bases of adaptive variation. To decipher the relative roles that evolutionary history and constraint play in the diversification of morphology, it is critical to integrate robust phylogenetic sampling of developmental processes across micro-, meso- and macroevolutionary timescales (Abouheif, 2008, Wake et al., 2011; Sanger & Rajakumar, 2019). We do not yet know whether this pattern of conserved variation is limited to rapidly diversifying adaptive radiations, such as Anolis (Sanger et al., 2012, 2013) and Darwin’s finches (Abzhanov et al., 2004, 2006; Mallarino et al., 2012), or whether it is a general phenomenon of morphological evolution. Testing this hypothesis will require the developmental bases of adaptive variation to be studied in additional groups that have diversified over different timescales. Once vetted, the hypothesis of conserved variation may provide a general rule regarding the processes that govern the production of selectable phenotypic variation.

ACKNOWLEDGEMENTS
We thank Y. Xia, B. Pinto and S. Keating for comments and discussion on the manuscript. We thank J.
Schluep for assistance with SEM preparation at LUC. B. Kircher and A. Reese helped maintain Anolis breeding colonies. We also acknowledge the oversight and assistance of the Institutional Animal Care and Use Committees (IACUC) and employees of the captive animal facilities of UF, MU and LUC. We thank S. Nielsen and B. Pinto for field work assistance in Puerto Rico collecting Sphaerodactylus macrolepis (2016-IC-091), R. Laver and S. Keating for field work assistance in Hawaii collecting L. lugubris (EX-18-06), and C. Siler and A. Fenwick for collecting H. turcicus in Oklahoma (ODWC-6945). Funding for this project came from Loyola University Chicago Provost’s Office and Department of Biology (T.J.S.), Marquette University Department of Biological Sciences (A.H.G., T.G.), Howard Hughes Medical Institute (T.J.S., M.J.C.), National Science Foundation MRI 1726994 (J. Ciszek, Loyola University Chicago) and National Science Foundation DEB 1657662 (T.G.). The authors declare no conflicts of interest.

DATA AVAILABILITY
The data underlying this work are available in the article and in its online Supporting Information.

REFERENCES

Additional Supporting Information may be found in the online version of this article at the publisher’s web-site:

Figure S1. Scanning electron micrographs depicting plantar views of the developing padless *Sceloporus undulatus* pes, digit IV. Light microscope image of adult pes.

Figure S2. Scanning electron micrographs depicting plantar views of the developing basal padded *Anolis sagrei* pes, digit IV. Numbers correspond to the developing ridges, scisors or lamellae. Light microscope image of adult pes.

Figure S3. Scanning electron micrographs depicting plantar views of the developing basal padded *Anolis carolinensis* pes, digit IV. Numbers correspond to the developing ridges, scisors or lamellae. Light microscope image of adult pes.

Figure S4. Scanning electron micrographs depicting plantar views of the developing padless *Eublepharis macularius* pes, digit IV. Light microscope image of adult pes.

Figure S5. Scanning electron micrographs depicting plantar views of the developing basal padded *Correlophus ciliatus* pes, digit IV. Numbers correspond to the developing ridges, scisors or lamellae. Light microscope image of adult pes.

Figure S6. Scanning electron micrographs depicting plantar views of the developing basal padded *Lepidodactylus lugubris* pes, digit IV. Numbers correspond to the developing ridges, scisors or lamellae. Arrows illustrate the direction of inferred digital ridge expansion. Light microscope image of adult pes.

Figure S7. Scanning electron micrographs depicting plantar views of the developing basal padded *Hemidactylus turcicus* pes, digit IV. Numbers correspond to the developing ridges, scisors or lamellae. Arrows illustrate the direction of inferred digital ridge expansion. Light microscope image of adult pes.

Figure S8. Opportunistic sampling of *Anolis* embryos. Scanning electron micrographs depicting plantar views of *Anolis angusticeps*, *Anolis grahami*, *Anolis cybotes*, *Anolis lineatopus*, *Anolis equestris* and *Anolis brevirostris* embryonic pes, digit IV. Numbers correspond to the developing ridges or lamellae.

Figure S9. Opportunistic sampling of gekko embryos. Scanning electron micrographs depicting plantar views of distal-padded *Sphaerodactylus macrolepis* embryonic pes, digit IV.

Table S1. Comparative digital development time table of non-padded species investigated in this study in days post-oviposition (DPO).

Table S2. Comparative digital development time table of padded species investigated in this study. Both days post-oviposition (DPO) and stages (St) are included when appropriate. Stages are further divided and labelled as either early (e) or late (l). A dash indicates data are not available for opportunistically sampled species(•). DPO data were unavailable for *Sphaerodactylus macrolepis*. DPO should be used with caution as relatively few individuals of each stage were observed for some species, making an evaluation of variation difficult or impossible.
Supporting Information

Supplementary Figure 1. Scanning electron micrographs depicting the plantar view of the developing padless *Sceloporus undulatus* pes, digit IV. Light microscope image of adult pes.
Supplementary Figure 2. Scanning electron micrographs depicting the plantar view of the developing basal padded *Anolis sagrei* pes, digit IV. Numbers correspond to the developing ridges, scansors, or lamellae. Light microscope image of adult pes.
Supplementary Figure 3. Scanning electron micrographs depicting the plantar view of the developing basal padded *Anolis carolinensis* pes, digit IV. Numbers correspond to the developing ridges, scansors, or lamellae. Light microscope image of adult pes.
Supplementary Figure 4. Scanning electron micrographs depicting the plantar view of the developing padless *Eublepharis macularius* pes, digit IV. Light microscope image of adult pes.
Supplementary Figure 5. Scanning electron micrographs depicting the plantar view of the developing basal padded *Correlophus ciliatus* pes, digit IV. Numbers correspond to the developing ridges, scanners, or lamellae. Light microscope image of adult pes.
Supplementary Figure 6. Scanning electron micrographs depicting the plantar view of the developing basal padded *Lepidodactylus lugubris* pes, digit IV. Numbers correspond to the developing ridges, scansors, or lamellae. Arrows illustrate the direction of inferred digital ridge expansion. Light microscope image of adult pes.
Supplementary Figure 7. Scanning electron micrographs depicting the plantar view of the developing basal padded *Hemidactylus turcicus* pes, digit IV. Numbers correspond to the developing ridges, scansors, or lamellae. Arrows illustrate the direction of inferred digital ridge expansion. Light microscope image of adult pes.
Supplementary Figure 8. Opportunistic sampling of *Anolis* embryos. Scanning electron micrographs depicting the plantar view of *Anolis angusticeps*, *Anolis grahami*, *Anolis cybotes*, *Anolis lineatopus*, *Anolis equestris*, and *Anolis brevirostris* embryonic pes, digit IV. Numbers correspond to the developing ridges or lamellae.
Supplementary Figure 9. Opportunistic sampling of gecko embryos. Scanning electron micrographs depicting the plantar view of distal-padded *Sphaerodactylus macrolepis* embryonic pes, digit IV.
Supplementary Table 1. Comparative digital development time table of non-padded species investigated in this study in days postoviposition (DPO).

<table>
<thead>
<tr>
<th>Species</th>
<th>Digit free of webbing, no ridges</th>
<th>Initial scale ridge formation</th>
<th>Additional ridge expansion</th>
<th>Plantar scale development complete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sceloporus undulatus</td>
<td>24 dpo</td>
<td>27 dpo</td>
<td>30 dpo</td>
<td>37 dpo</td>
</tr>
<tr>
<td>Eublepharis macularius</td>
<td>20 dpo</td>
<td>21 dpo</td>
<td>30 dpo</td>
<td>34 dpo</td>
</tr>
</tbody>
</table>
Supplementary Table 2. Comparative digital development time table of padded species investigated in this study. Both days postoviposition (DPO) and stages (St) included when appropriate. Stages are further divided and labeled as either early (e) or late (l). “—” indicates data is not available for opportunistically sampled species(*). DPO data unavailable for S. macrolepis. DPO should be used with caution as relatively few individuals of each stages were observed for some species making an evaluation of variation difficult or impossible.

<table>
<thead>
<tr>
<th>Species</th>
<th>Initial pad formed, no ridges</th>
<th>Initial ridge formation</th>
<th>Additional ridge formation, ridge expansion</th>
<th>Toe pad elaboration or additional ridge formation</th>
<th>Toe pad development complete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anolis angusticeps*</td>
<td>—</td>
<td>14 dpo</td>
<td>16 dpo</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>A. brevirostris*</td>
<td>—</td>
<td>—</td>
<td>14 dpo</td>
<td>18 dpo</td>
<td>—</td>
</tr>
<tr>
<td>A. carolinensis</td>
<td>14 dpo</td>
<td>16 dpo</td>
<td>17 dpo</td>
<td>19 dpo</td>
<td>22 dpo</td>
</tr>
<tr>
<td>A. cybotes*</td>
<td>—</td>
<td>11 dpo</td>
<td>13 dpo</td>
<td>—</td>
<td>19 dpo</td>
</tr>
<tr>
<td>A. equestris*</td>
<td>35 dpo</td>
<td>—</td>
<td>45 dpo</td>
<td>50 dpo</td>
<td>—</td>
</tr>
<tr>
<td>A. graham*</td>
<td>—</td>
<td>—</td>
<td>17 dpo</td>
<td>22 dpo</td>
<td>—</td>
</tr>
<tr>
<td>A. lineatopus*</td>
<td>—</td>
<td>12 dpo</td>
<td>—</td>
<td>15 dpo</td>
<td>18 dpo</td>
</tr>
<tr>
<td>A. sagrei</td>
<td>11 dpo</td>
<td>12 dpo</td>
<td>13 dpo</td>
<td>15 dpo</td>
<td>18 dpo</td>
</tr>
<tr>
<td>Correlophus ciliatus</td>
<td>27 dpo</td>
<td>29 dpo</td>
<td>31 dpo</td>
<td>37 dpo</td>
<td>48 dpo</td>
</tr>
<tr>
<td>Lepidodactylus lugubris</td>
<td>24 dpo</td>
<td>26 dpo</td>
<td>30 dpo</td>
<td>36 dpo</td>
<td>44 dpo</td>
</tr>
<tr>
<td>Hemidactylus turcicus</td>
<td>20 dpo</td>
<td>24 dpo</td>
<td>28 dpo</td>
<td>31 dpo</td>
<td>38 dpo</td>
</tr>
</tbody>
</table>